智行千里,“人文”為本:可視化文本分析將引領(lǐng)人工智能3.0時代
2020年第二季度的Forrester Wave分析報告中,SAS被評為基于AI的文本分析領(lǐng)域領(lǐng)導(dǎo)者。
2020年7月20日,中國北京 — 近日,全球領(lǐng)先的獨(dú)立研究機(jī)構(gòu)Forrester發(fā)布2020年第二季度的Forrester Wave分析報告。與往年有所不同,今年的報告首次將“基于人工智能的文本分析平臺”的分析主題分為“文檔數(shù)據(jù)”和“個人數(shù)據(jù)”兩大方向。而作為全球數(shù)字分析領(lǐng)域的領(lǐng)導(dǎo)者,SAS憑借多年以來在文本分析上的技術(shù)深耕以及人工智能上的創(chuàng)新成果,同時被Forrester Wave分析報告評為基于人工智能的“文檔數(shù)據(jù)”和“個人數(shù)據(jù)”文本分析雙領(lǐng)域的領(lǐng)導(dǎo)者。
眾所周知,大部分的商業(yè)相關(guān)信息都是以非結(jié)構(gòu)化格式(主要是文本數(shù)據(jù))而存在的,但是由于近年來數(shù)據(jù)的爆發(fā)式激增,不僅使本來非結(jié)構(gòu)化的數(shù)據(jù)被進(jìn)一步沉積,也讓數(shù)據(jù)質(zhì)量更加糅雜。倒逼之下,越來越多的企業(yè)竭力尋找更高效、更智能的工具來獲得快速增長的數(shù)據(jù)并從中挖掘出可實(shí)現(xiàn)的價值。但是,一些錯綜復(fù)雜的因素(比如:價格、專家評定、學(xué)習(xí)過程、時間)成為企業(yè)尋找“得手”工具的阻礙。可視化文本分析平臺的出現(xiàn),能幫助企業(yè)擺脫這種“進(jìn)退兩難”的境地,并讓收集信息比以前更加簡單?梢暬谋痉治銎脚_讓每一個人都能夠在數(shù)據(jù)驅(qū)動基礎(chǔ)上增加決策程序,同時這個平臺也可成為一些綜合商業(yè)智能計劃的重要成分。
“對于不同的行業(yè)領(lǐng)域,任何企業(yè)和機(jī)構(gòu)都可從海量的非結(jié)構(gòu)化數(shù)據(jù)中挖掘出深刻洞察和巨大商業(yè)價值”。SAS公司高級產(chǎn)品市場經(jīng)理Katie Tedrow表示:“文本分析確實(shí)可以幫助企業(yè)機(jī)構(gòu)解決復(fù)雜的業(yè)務(wù)問題,例如偵測欺詐行為、評估客戶反饋等,但是傳統(tǒng)的分析流程更傾向于勞動密集型,更依賴手動操作且需要更多的人力投入。SAS可視化文本分析(SAS Visual Text Analytics)則通過自然語言處理(NLP)、機(jī)器學(xué)習(xí)和語言規(guī)則等強(qiáng)大功能,幫助商業(yè)用戶輕松挖掘非結(jié)構(gòu)化數(shù)據(jù)背后隱藏的價值,制定商業(yè)決策并提升用戶體驗(yàn)!
以“人文”為本,透視非結(jié)構(gòu)化數(shù)據(jù)中蘊(yùn)藏的金礦
針對結(jié)構(gòu)化數(shù)據(jù)的可視化在許多公司中成為最優(yōu)也是最便捷的文本分析方式。但是無法回避的是,許多企業(yè)仍然被淹沒在巨大的數(shù)據(jù)量以及文本數(shù)據(jù)源快速增長的洪流當(dāng)中。因此許多的數(shù)據(jù)都夾雜了大量的非結(jié)構(gòu)化數(shù)據(jù)。
文本數(shù)據(jù)一直存在且隨處可見。這些數(shù)據(jù)可以在你公司內(nèi)部的郵件信息、聊天記錄以及搜集到的調(diào)查結(jié)果中得到,也可以是你對個人網(wǎng)站上的評論、對客戶關(guān)系管理系統(tǒng)中的評論或者是從你使用的個人應(yīng)用程序中得到的文本字段。甚至是你在公司外部的社會媒體、論壇以及來自于一些你很感興趣的話題的評論。因此,這些文本數(shù)據(jù)零散且冗雜,對于企業(yè)而言針對這些非結(jié)構(gòu)化數(shù)據(jù)進(jìn)行文本分析有些“入不敷出”。所以有些企業(yè)現(xiàn)在正投資幾十億美金分析結(jié)構(gòu)化數(shù)據(jù),卻對非結(jié)構(gòu)化數(shù)據(jù)置之不理。
熟不知,無論是各類文檔數(shù)據(jù),還是能夠描繪用戶畫像的個人數(shù)據(jù),在這些非結(jié)構(gòu)化數(shù)據(jù)中都蘊(yùn)藏著有用的信息寶庫,利用數(shù)據(jù)可視化工具分析非結(jié)構(gòu)化數(shù)據(jù)能夠幫助企業(yè)快速地了解現(xiàn)狀、顯示趨勢并且識別新出現(xiàn)的問題。在Forrester Wave基于人工智能的文檔數(shù)據(jù)和個人數(shù)據(jù)文本分析平臺兩大分析報告中,SAS可視化文本分析秉持“人文為本”的研發(fā)和優(yōu)化策略,在諸多子類別評選中均獲得了最高分,包括:子文檔分析、機(jī)器學(xué)習(xí)能力、架構(gòu)、安全性、產(chǎn)品支持及服務(wù)、全球市場表現(xiàn)等。
兩份報告都指出:“SAS可視化文本分析進(jìn)一步完善了自身強(qiáng)大的分析產(chǎn)品和解決方案組合,它主要基于SAS Viya 平臺,不僅能夠?qū)崿F(xiàn)不同應(yīng)用場景之間的數(shù)據(jù)共享和模型管理,更輔以杰出的商業(yè)智能、便捷的分析圖形用戶界面和其他微服務(wù)架構(gòu),為企業(yè)和用戶提供絕佳的用戶體驗(yàn)!
讓機(jī)器決策,賦能文本分析引領(lǐng)人工智能3.0時代
事實(shí)上,“人工智能”正式提出時,計算機(jī)國際象棋和機(jī)器翻譯就是人工智能的兩個標(biāo)志性目標(biāo),但直到國際象棋甚至圍棋都被人工智能所攻克,機(jī)器認(rèn)知智能的核心能力之一,即自然語言處理(NLP)能力依然無法和人類相比。
NLP大致包含三個技術(shù)層面:詞法分析、句法分析、語義分析,三者之間既遞進(jìn)又相互包含,這也構(gòu)成了NLP技術(shù)的最大瓶頸。由于詞句往往在具體的場景下?lián)碛胁煌暮x,人在理解時會基于已有知識儲備和上下文環(huán)境,然而人工智能目前還很難做到。要讓機(jī)器理解我們?nèi)祟惖恼Z言,機(jī)器必需共享與我們類似的背景知識,還需要依賴深度學(xué)習(xí)技術(shù),這也就需要大規(guī)模甚至超大規(guī)模的數(shù)據(jù)積累,讓機(jī)器不斷訓(xùn)練和學(xué)習(xí)。
SAS公司副總裁兼大中華區(qū)董事總經(jīng)理何偉信表示:“回首人工智能發(fā)展的60多年,我們經(jīng)歷了“算法為重”的1.0階段,現(xiàn)在則進(jìn)入“數(shù)據(jù)凸顯”的2.0階段,但真正步入“讓機(jī)器做明智決策”的3.0階段,還需要大量數(shù)據(jù)積累和技術(shù)的提升。因此,實(shí)現(xiàn)認(rèn)知智能不僅是當(dāng)前人工智能領(lǐng)域發(fā)展的重要使命,更是SAS未來幾年不斷探索追求的終極目標(biāo)!
SAS可視化文本分析就融合了智能算法、NLP、機(jī)器學(xué)習(xí)等創(chuàng)新技術(shù),自動抽取非結(jié)構(gòu)化數(shù)據(jù)中的關(guān)系和模式,從而使手動分析成為歷史。NLP工具可幫助用戶進(jìn)行情感分析,將語音轉(zhuǎn)化為文本,理解自然語言并生成自然語言。例如,通過NLP訪問和分析未挖掘的數(shù)據(jù),使金融機(jī)構(gòu)能夠提高反洗錢(AML)調(diào)查的管理效率和精準(zhǔn)度。采用自動化分析后,調(diào)查人員可以使用統(tǒng)一的風(fēng)險識別手段來應(yīng)對負(fù)面新聞監(jiān)測、交易單據(jù)違規(guī)監(jiān)控等繁雜的業(yè)務(wù)場景。這使得用戶能夠了解各個事件的風(fēng)險級別,然后優(yōu)先調(diào)查風(fēng)險最大的事件。
以“知的力量”,讓智能分析服務(wù)人類社會健康發(fā)展
一直以來,SAS都秉持“知的力量”,對其簡單易用且功能強(qiáng)大的自動化分析平臺進(jìn)行完善和升級,以幫助數(shù)字顛覆者和新興領(lǐng)導(dǎo)者開辟前進(jìn)的道路。最新版的SAS Viya 、SAS平臺、SAS可視化文本分析等均加入人工智能相關(guān)的創(chuàng)新技術(shù),尤其在機(jī)器學(xué)習(xí)、計算機(jī)視覺、NLP以及其它支持人工智能的技術(shù)領(lǐng)域大舉發(fā)力。
特別是SAS近年來宣布將投資10億美元用于人工智能,在此基礎(chǔ)上SAS還將改進(jìn)計算機(jī)視覺軟件,以幫助企業(yè)利用可視化數(shù)據(jù)來改善業(yè)務(wù)成果!拔覀円恢辈粩嗤菩小牧α俊(qiáng)調(diào)智能創(chuàng)新,這一點(diǎn)清晰地體現(xiàn)在SAS平臺和SAS人工智能技術(shù)中。創(chuàng)新推動著領(lǐng)先的公司、管理人員和數(shù)據(jù)科學(xué)家通過應(yīng)用高級分析來改變其公司、行業(yè)的發(fā)展軌跡,甚至為人類社會謀福祉”。SAS首席執(zhí)行官Jim Goodnight表示。
因此,正值疫情期間,SAS還發(fā)布了COVID-19科學(xué)文獻(xiàn)搜索與文本分析平臺,該平臺為研究人員提供了免費(fèi)的可視化文本分析環(huán)境,憑借強(qiáng)大的人工智能和機(jī)器學(xué)習(xí)技術(shù),讓相關(guān)人員能夠從數(shù)以萬計的研究文獻(xiàn)中檢索最需要的文本內(nèi)容,不僅讓研究人員能夠更快、更精準(zhǔn)地找到潛在的解決方案,同時也為疫情防控做出貢獻(xiàn)。

發(fā)表評論
請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
-
7月8日立即報名>> 【在線會議】英飛凌新一代智能照明方案賦能綠色建筑與工業(yè)互聯(lián)
-
7月22-29日立即報名>> 【線下論壇】第三屆安富利汽車生態(tài)圈峰會
-
7月31日免費(fèi)預(yù)約>> OFweek 2025具身機(jī)器人動力電池技術(shù)應(yīng)用大會
-
7.30-8.1火熱報名中>> 全數(shù)會2025(第六屆)機(jī)器人及智能工廠展
-
免費(fèi)參會立即報名>> 7月30日- 8月1日 2025全數(shù)會工業(yè)芯片與傳感儀表展
-
即日-2025.8.1立即下載>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書》
推薦專題
- 1 AI 眼鏡讓百萬 APP「集體失業(yè)」?
- 2 豆包前負(fù)責(zé)人喬木出軌BP后續(xù):均被辭退
- 3 一文看懂視覺語言動作模型(VLA)及其應(yīng)用
- 4 “支付+”時代,支付即生態(tài) | 2025中國跨境支付十大趨勢
- 5 中國最具實(shí)力AI公司TOP10
- 6 特斯拉Robotaxi上路,馬斯克端上畫了十年的餅
- 7 國家數(shù)據(jù)局局長劉烈宏調(diào)研格創(chuàng)東智
- 8 AI的夏天:第四范式VS云從科技VS地平線機(jī)器人
- 9 張勇等人退出阿里合伙人
- 10 深圳跑出40億超級隱形冠軍:賣機(jī)器人年入6.1億,港股上市