一文教你使用python+Keras檢測年齡和性別
目標(biāo)
本文的主要目的是通過給定的數(shù)據(jù)集檢測年齡和性別。我們將使用簡單的 python 和 Keras 方法來檢測年齡和性別。
介紹
將攝像頭、衛(wèi)星、飛機(jī)以及日常生活中所拍攝的圖像進(jìn)行升級,稱為圖像處理。
基于分析的圖像處理經(jīng)歷了許多不同的技術(shù)和計算。
圖片中可獲取信息的位置是非常必要的信息。圖像包含的信息將被更改和調(diào)整以用于發(fā)現(xiàn)目的。
在面部識別策略中:面部包含的關(guān)節(jié)包含大量數(shù)據(jù)。當(dāng)一個人與另一個人產(chǎn)生聯(lián)系時,就會產(chǎn)生大量的想法。
思想的演變有助于確定某些界限。年齡評估是一個多層次的問題。不同年齡的人有不同的面部特征,因此很難將這些圖像組合起來。
要確定幾個人臉的年齡和性別的程序,后面有幾種方法。從神經(jīng)網(wǎng)絡(luò)中,特征由卷積網(wǎng)絡(luò)獲取。根據(jù)準(zhǔn)備好的模型,將圖像處理為其中一個年齡段?蚣艿臏(zhǔn)備工作將進(jìn)一步進(jìn)行。
數(shù)據(jù)集
UTK 數(shù)據(jù)集包含 .csv 格式的年齡、性別、圖像和像素。根據(jù)圖像的年齡和性別檢測已經(jīng)研究了很長時間。多年來,人們采用不同的方法來處理這個問題,F(xiàn)在我們開始使用 Python 編程語言識別年齡和性別。
Keras 是 TensorFlow 庫的接口。如果你需要一個允許簡單快速的原型制作(通過易用性、隱蔽性和可擴(kuò)展性)的深度學(xué)習(xí)庫,請使用 Keras。Keras支持卷積網(wǎng)絡(luò)和重復(fù)組織,可以在 CPU 和 GPU 上完美運行。
代碼
#Import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df=pd.read_csv("age_gender.csv")
df1= pd.DataFrame(df)
plt.xlabel = 'Gender (1= Female, 0-Male)'
plt.figure(figsize=(10,7))
ax=df1.gender.value_counts().plot.bar(x='Gender (1= Female, 0-Male)', y='Count', title='Gender', legend = (1,0, ('Female', 'Male')))
plt.figure(figsize=(10,7))
labels =['White','Black','Indian','Asian','Hispanic']
ax=df1.ethnicity.value_counts().plot.bar()
ax.set_xticklabels(labels)
ax.set_title('Ethinicity')
## Converting pixels into numpy array
df1['pixels'] = df1['pixels'].a(chǎn)pply(lambda x: np.reshape(np.a(chǎn)rray(x.split(), dtype="float32"), (48,48)))
df1.head()
def plot_data(rows, cols, lower_value, upper_value):
fig = plt.figure(figsize=(cols*3,rows*4))
for i in range(1, cols*rows + 1):
k = np.random.randint(lower_value,upper_value)
fig.a(chǎn)dd_subplot(rows, cols, i) # adding sub plot
gender = gender_values_to_labels[df.gender[k]]
ethnicity = eth_values_to_labels[df.ethnicity[k]]
age = df.a(chǎn)ge[k]
im = df.pixels[k]
plt.imshow(im, cmap='gray')
plt.a(chǎn)xis('off')
plt.title(f'Gender:{gender}nAge:{age}nEthnicity:{ethnicity}')
plt.tight_layout()
plt.show()
圖 1 通過簡單的 Python 進(jìn)行年齡和性別檢測
Keras
Keras 是一個開源的神經(jīng)網(wǎng)絡(luò)庫。它是用 Python 編寫的,非常適合在由 Google 工程師 Francois Chollet 開發(fā)的 Theano、TensorFlow 或 CNTK 上運行。它易于理解、可擴(kuò)展,特別適合于對復(fù)雜的神經(jīng)組織進(jìn)行更快的實驗。
首先,我們將上傳數(shù)據(jù)集所需的所有庫。我們將使用 np.a(chǎn)rray 將所有列轉(zhuǎn)換為數(shù)組,并轉(zhuǎn)換為 dtype float。然后我們將數(shù)據(jù)集拆分為 xTrain、yTrain、yTest 和 xtest。最后,我們將依次應(yīng)用模型并測試預(yù)測。
具體來說,首先,我們使用pandas、read_csv函數(shù)讀取包含年齡、種族、性別、圖像名稱和像素五列的CSV文件。前五行是通過使用 DataFrame.head() 方法獲得的。我們使用 NumPy 庫將列名像素轉(zhuǎn)換為數(shù)組,并使用 lambda 函數(shù)將它們重塑為 48、48 維。我們還通過相同的 lambda 函數(shù)轉(zhuǎn)換了浮點數(shù)中的值。
我們將這些值進(jìn)一步除以 255。
我們分配變量名以獲取像素列的第一行。我們通過使用 matplotlib 進(jìn)一步檢查圖像是否被看到。
導(dǎo)入庫
import keras
import json
import sys
import tensorflow as tf
from keras.layers import Input
import numpy as np
import argparse
from keras_applications.resnext import ResNeXt50
from keras.utils.data_utils import get_file
import face_recognition
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import cv2
from PIL import Image
df=pd.read_csv("age_gender.csv")df.head()df1= pd.DataFrame(df)
df1['pixels'] = df1.pixels.a(chǎn)pply(lambda x: np.reshape(np.a(chǎn)rray(x.split(' '),dtype='float32'),(48,48)))
df1['pixels']= df1['pixels']/255
im = df1['pixels'][0]
im
plt.imshow(im, cmap='gray')
plt.a(chǎn)xis('off')
圖2 重塑后的圖像
要將所有值轉(zhuǎn)換為浮點數(shù)并對其進(jìn)行重塑,我們使用了函數(shù) for 和 NumPy。為了將年齡和性別存儲在列表中,我們將使用另一個變量 labels_f。
稍后的模型將用于擬合數(shù)據(jù)并對其進(jìn)行驗證。
#收集所有圖像并重塑它們,檢查dtype。
X = np.zeros(shape=(23705,48,48))
for i in range(len(df1["pixels"])):
X[i] = df1["pixels"][i]
X.dtype
Output - dtype('float64')
#Age
ag = df1['age']
ag=ag.a(chǎn)stype(float)
ag= np.a(chǎn)rray(ag)
ag.shape
輸出 - (23705,)
#性別
g= df1['gender']
g=np.a(chǎn)rray(g)
g.shape
(23705,)
labels_f =[]
i=0
while i
label.a(chǎn)ppend([a[i]])
label.a(chǎn)ppend([g[i]])
labels_f.a(chǎn)ppend(label)
i+=1
Both age and gender are combined and stored in labels_f, we will further convert the list into array.
labels_f =np.a(chǎn)rray(labels_f)
labels_f.shape
(23705, 2, 1)
使用最常用的機(jī)器學(xué)習(xí)庫 sklearn,將數(shù)據(jù)拆分為訓(xùn)練和測試。
#Splitting the data taking data set
import tensorflow as tf
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test= train_test_split(X,a,test_size=0.25)
print(X_test.shape)
print(X_train.shape)
print(Y_test.shape)
print(Y_train.shape)
圖 3 X_train、X_test、Y_train 和 Y_test 的形狀輸出
Y_train_2=[Y_train[:,1],Y_train[:,0]]
Y_test_2=[Y_test[:,1],Y_test[:,0]]
#模型
from tensorflow.keras.layers import Dropout
from tensorflow.keras.layers import Flatten,BatchNormalization
from tensorflow.keras.layers import Dense, MaxPooling2D,Conv2D
from tensorflow.keras.layers import Input,Activation,Add
from tensorflow.keras.models import Model
from tensorflow.keras.regularizers import l2
from tensorflow.keras.optimizers import Adam
import tensorflow as tf
def Convolution(input_tensor,filters):
x = Conv2D(filters=filters,kernel_size=(3, 3),padding = 'same',strides=(1, 1),kernel_regularizer=l2(0.001))(input_tensor)
x = Dropout(0.1)(x)
x= Activation('relu')(x)
return x
def model(input_shape):
inputs = Input((input_shape))
conv_1= Convolution(inputs,32)
maxp_1 = MaxPooling2D(pool_size = (2,2)) (conv_1)
conv_2 = Convolution(maxp_1,64)
maxp_2 = MaxPooling2D(pool_size = (2, 2)) (conv_2)
conv_3 = Convolution(maxp_2,128)
maxp_3 = MaxPooling2D(pool_size = (2, 2)) (conv_3)
conv_4 = Convolution(maxp_3,256)
maxp_4 = MaxPooling2D(pool_size = (2, 2)) (conv_4)
flatten= Flatten() (maxp_4)
dense_1= Dense(64,activation='relu')(flatten)
dense_2= Dense(64,activation='relu')(flatten)
drop_1=Dropout(0.2)(dense_1)
drop_2=Dropout(0.2)(dense_2)
output_1= Dense(1,activation="sigmoid",name='sex_out')(drop_1)
output_2= Dense(1,activation="relu",name='age_out')(drop_2)
model = Model(inputs=[inputs], outputs=[output_1,output_2])
model.compile(loss=["binary_crossentropy","mae"], optimizer="Adam",
metrics=["accuracy"])
return model
Model=model((48,48,1))
Model.summary()
圖 4 詳細(xì)模型匯總
History=Model.fit(X_train,Y_train_2,batch_size=64,validation_data=(X_test,Y_test_2),epochs=5,callbacks=[callback_list])
Model.evaluate(X_test,Y_test_2)
pred=Model.predict(X_test)
pred[1]
#繪制圖像
def test_image(ind,X,Model):
plt.imshow(X[ind])
image_test=X[ind]
pred_1=Model.predict(np.a(chǎn)rray([image_test]))
sex_f=['Female','Male']
age=int(np.round(pred_1[1][0]))
sex=int(np.round(pred_1[0][0]))
print("Predicted Age: "+ str(age))
print("Predicted Sex: "+ sex_f[sex])
test_image(1980,X, Model)
圖 5 模型的年齡和性別檢測。
結(jié)論
識別年齡和性別的任務(wù)是一個麻煩問題,比許多其他視覺任務(wù)更是如此。
這個問題漏洞的根本在于準(zhǔn)備這些類型的框架所需的信息。雖然一般的文章發(fā)現(xiàn)通?梢蕴幚頂(shù)千甚至大量的圖片以供準(zhǔn)備,但具有年齡和性別名稱的數(shù)據(jù)集要廣泛得多,通常在大量或最好的情況下,數(shù)千Python獲取的圖像,模型在準(zhǔn)確率上做得并不好,模型算法有待改進(jìn)。

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
-
即日-9.1立即下載>> 【限時下載】ADI中國三十周年感恩回饋助力企業(yè)升級!
-
11月27日立即報名>> 【工程師系列】汽車電子技術(shù)在線大會
-
精彩回顧立即查看>> 【在線研討會】解析安森美(onsemi)高精度與超低功耗CGM系統(tǒng)解決方案
-
精彩回顧立即查看>> 【在線會議】CAE優(yōu)化設(shè)計:醫(yī)療器械設(shè)計的應(yīng)用案例與方案解析
-
精彩回顧立即查看>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書》
-
精彩回顧立即查看>> 7月30日- 8月1日 2025全數(shù)會工業(yè)芯片與傳感儀表展
推薦專題
- 1 傳魏建軍與賈躍亭合作,長城汽車出海美國
- 2 黃仁勛:與雷軍長期合作,共探AI智駕
- 3 阿里首位程序員,“掃地僧”多隆已離職
- 4 DeepSeek R2加持,中國AI與芯片產(chǎn)業(yè)迎來新一輪協(xié)同進(jìn)化
- 5 六大國產(chǎn)大模型,誰是最強(qiáng)“金融分析師”?|錦緞評測
- 6 2025年第一支10倍股,來了!
- 7 募資39.85億元!寒武紀(jì)押注大模型芯片與軟件平臺
- 8 國內(nèi)免費版Deep Research上線,秘塔AI深度研究嘗試重塑知識工作范式
- 9 清庫存?曝英偉達(dá)H20供應(yīng)有限,且沒有復(fù)產(chǎn)計劃
- 10 具身智能機(jī)器人量產(chǎn)前夜,標(biāo)準(zhǔn)機(jī)腦正在成型