我們真的永遠(yuǎn)也理解不了人工智能嗎?
美國科學(xué)雜志nautil.us《鸚鵡螺》作家Aaron M. Bornstein發(fā)表了針對(duì)人工智能時(shí)代下神經(jīng)網(wǎng)絡(luò)模型的深度報(bào)道。從語音識(shí)別到語言翻譯,從下圍棋的機(jī)器人到自動(dòng)駕駛汽車,各行各業(yè)都在該人工智能的驅(qū)動(dòng)下出現(xiàn)了新的突破。雖然現(xiàn)代神經(jīng)網(wǎng)絡(luò)的表現(xiàn)令人激動(dòng),但也面臨一個(gè)棘手的問題:沒人理解它們的運(yùn)行機(jī)制,這也就意味著,沒人能預(yù)測(cè)它們何時(shí)可能失靈。正因?yàn)槿绱耍S多人遲疑不前、不敢對(duì)神秘莫測(cè)的神經(jīng)網(wǎng)絡(luò)下注。
在神經(jīng)網(wǎng)絡(luò)中,數(shù)據(jù)從一層傳遞到另一層,每一步都經(jīng)歷一些簡單的轉(zhuǎn)變。在輸入層和輸出層之間還隱藏著若干層,以及眾多節(jié)點(diǎn)組和連接。其中往往找不出可被人類解讀的規(guī)律,與輸入或輸出也沒有明顯的聯(lián)系。“深度”網(wǎng)絡(luò)便是隱藏層數(shù)量較多的神經(jīng)網(wǎng)絡(luò)
以下為文章全文:
作為IBM的一名研究科學(xué)家,迪米特里·馬里奧托夫其實(shí)不太說得上來自己究竟打造了什么。他的部分工作內(nèi)容是打造機(jī)器學(xué)習(xí)系統(tǒng)、解決IBM公司客戶面臨的棘手問題。例如,他曾為一家大型保險(xiǎn)公司編寫了一套程序。這項(xiàng)任務(wù)極具挑戰(zhàn)性,要用到一套十分復(fù)雜的算法。在向客戶解釋項(xiàng)目結(jié)果時(shí),馬里奧托夫更是大傷腦筋!拔覀儧]辦法向他們解釋這套模型,因?yàn)樗麄儧]受過機(jī)器學(xué)習(xí)方面的培訓(xùn)!
其實(shí),就算這些客戶都是機(jī)器學(xué)習(xí)專家,可能也于事無補(bǔ)。因?yàn)轳R里奧托夫打造的模型為人工神經(jīng)網(wǎng)絡(luò),要從特定類型的數(shù)據(jù)中尋找規(guī)律。在上文提到的例子中,這些數(shù)據(jù)就是保險(xiǎn)公司的客戶記錄。此類網(wǎng)絡(luò)投入實(shí)際應(yīng)用已有半個(gè)世紀(jì)之久,但近年來又有愈演愈烈之勢(shì)。從語音識(shí)別到語言翻譯,從下圍棋的機(jī)器人到自動(dòng)駕駛汽車,各行各業(yè)都在該技術(shù)的驅(qū)動(dòng)下出現(xiàn)了新的突破。
雖然現(xiàn)代神經(jīng)網(wǎng)絡(luò)的表現(xiàn)令人激動(dòng),但也面臨一個(gè)棘手的問題:沒人理解它們的運(yùn)行機(jī)制,這也就意味著,沒人能預(yù)測(cè)它們何時(shí)可能失靈。
以機(jī)器學(xué)習(xí)專家里奇·卡魯阿納和同事們前幾年報(bào)告的一起事件為例:匹茲堡大學(xué)醫(yī)學(xué)中心的一支研究團(tuán)隊(duì)曾利用機(jī)器學(xué)習(xí)技術(shù)預(yù)測(cè)肺炎患者是否會(huì)出現(xiàn)嚴(yán)重并發(fā)癥。他們希望將并發(fā)癥風(fēng)險(xiǎn)較低的患者轉(zhuǎn)移到門診進(jìn)行治療,好騰出更多床位和人手。該團(tuán)隊(duì)試了幾種不同的方法,包括各種各樣的神經(jīng)網(wǎng)絡(luò),以及由軟件生成的決策樹,后者可總結(jié)出清晰易懂、能被人類理解的規(guī)則。
在現(xiàn)代機(jī)器學(xué)習(xí)算法中,可解釋性與精確度難以兩全其美。深度學(xué)習(xí)精確度最高,同時(shí)可解釋性最低
神經(jīng)網(wǎng)絡(luò)的正確率比其它方法都要高。但當(dāng)研究人員和醫(yī)生們分析決策樹提出的規(guī)則時(shí),卻發(fā)現(xiàn)了一些令人不安的結(jié)果:按照其中一條規(guī)則,醫(yī)生應(yīng)當(dāng)讓已患有哮喘的肺炎病人出院,而醫(yī)生們都知道,哮喘患者極易出現(xiàn)并發(fā)癥。
這套模型完全遵從了指令:
從數(shù)據(jù)中找出規(guī)律。它之所以給出了如此差勁的建議,其實(shí)是由數(shù)據(jù)中的一個(gè)巧合導(dǎo)致的。按照醫(yī)院政策,身患哮喘的肺炎患者需接受強(qiáng)化護(hù)理。而這項(xiàng)政策效果極佳,哮喘患者幾乎從不會(huì)產(chǎn)生嚴(yán)重并發(fā)癥。由于這些額外護(hù)理改變了該醫(yī)院的患者記錄,算法預(yù)測(cè)的結(jié)果也就截然不同了。
這項(xiàng)研究充分體現(xiàn)了算法“可解釋性”的價(jià)值所在?敯⒓{解釋道:“如果這套以規(guī)則為基礎(chǔ)的系統(tǒng)學(xué)到了‘哮喘會(huì)降低并發(fā)癥風(fēng)險(xiǎn)’這一規(guī)則,神經(jīng)網(wǎng)絡(luò)自然也會(huì)學(xué)到這一點(diǎn)!钡祟愖x不懂神經(jīng)網(wǎng)絡(luò),因此很難預(yù)知其結(jié)果。馬里奧托夫指出,若不是有一套可解釋的模型,“這套系統(tǒng)可能真的會(huì)害死人!
正因?yàn)槿绱耍S多人遲疑不前、不敢對(duì)神秘莫測(cè)的神經(jīng)網(wǎng)絡(luò)下注。馬里奧托夫?yàn)榭蛻籼峁┝藘商啄P停阂惶资巧窠?jīng)網(wǎng)絡(luò)模型,雖然精確,但難以理解;另一套則是以規(guī)則為基礎(chǔ)的模型,能夠用大白話向客戶解釋運(yùn)作原理。盡管保險(xiǎn)公司對(duì)精確度要求極高,每個(gè)百分點(diǎn)都十分重要,但客戶仍選擇了精確度稍遜的第二套模型。“他們覺得第二套模型更容易理解,”馬里奧托夫表示,“他們非?粗刂庇^性。”
隨著神秘難解的神經(jīng)網(wǎng)絡(luò)影響力與日俱增,就連政府都開始對(duì)其表示關(guān)注。歐盟兩年前提出,應(yīng)給予公民“要求解釋”的權(quán)利,算法決策需公開透明。但這項(xiàng)立法或許難以實(shí)施,因?yàn)榱⒎ㄕ卟⑽搓U明“透明”的含義。也不清楚這一省略是由于立法者忽略了這一問題、還是覺得其太過復(fù)雜導(dǎo)致。
事實(shí)上,有些人認(rèn)為這個(gè)詞根本無法定義。目前我們雖然知道神經(jīng)網(wǎng)絡(luò)在做什么(畢竟它們歸根到底只是電腦程序),但我們對(duì)“怎么做、為何做”幾乎一無所知。神經(jīng)網(wǎng)絡(luò)由成百上千萬的獨(dú)立單位、即神經(jīng)元構(gòu)成。每個(gè)神經(jīng)元都可將大量數(shù)字輸入轉(zhuǎn)化為單個(gè)數(shù)字輸出,再傳遞給另一個(gè)、或多個(gè)神經(jīng)元。就像在人腦中一樣,這些神經(jīng)元也分成若干“層”。一組細(xì)胞接收下一層細(xì)胞的輸入,再將輸出結(jié)果傳遞給上一層。
神經(jīng)網(wǎng)絡(luò)可通過輸入大量數(shù)據(jù)進(jìn)行訓(xùn)練,同時(shí)不斷調(diào)整各層之間的聯(lián)系,直到該網(wǎng)絡(luò)計(jì)算后輸出的結(jié)果盡可能接近已知結(jié)果(通常分為若干類別)。近年來該領(lǐng)域之所以發(fā)展迅猛,還要?dú)w功于幾項(xiàng)可快速訓(xùn)練深度網(wǎng)絡(luò)的新技術(shù)。在深度網(wǎng)絡(luò)中,初始輸入和最終輸出之間相隔多層。有一套叫AlexNet的著名深度網(wǎng)絡(luò),可對(duì)照片進(jìn)行歸類,根據(jù)照片的細(xì)微差別將其劃入不同類別。該網(wǎng)絡(luò)含有超過6000萬個(gè)“權(quán)重”,根據(jù)不同權(quán)重,神經(jīng)元會(huì)對(duì)每項(xiàng)輸入給予不同程度的關(guān)注。隸屬于康奈爾大學(xué)和AI初創(chuàng)公司Geometric Intelligence的計(jì)算機(jī)科學(xué)家杰森·尤辛斯基指出:“要想理解這個(gè)神經(jīng)網(wǎng)絡(luò),你就要對(duì)這6000萬個(gè)權(quán)重都有一定的了解!
而就算能夠?qū)崿F(xiàn)這種可解讀性,也未必是件好事。對(duì)可解讀性的要求相當(dāng)于制約了系統(tǒng)的能力,使模型無法僅關(guān)注輸入輸出數(shù)據(jù)、提供“純粹”的解決方案,從而有降低精確度之嫌。美國國防部高級(jí)研究計(jì)劃局項(xiàng)目主管戴維·甘寧曾在一次會(huì)議上對(duì)此進(jìn)行了總結(jié)。在他展示的圖表中,深度神經(jīng)網(wǎng)絡(luò)是現(xiàn)代機(jī)器學(xué)習(xí)方法中最難以理解的一種,而以規(guī)則為基礎(chǔ)、重視可解釋性勝過效率的決策樹則是最容易理解的一種。

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長度6~500個(gè)字
最新活動(dòng)更多
-
7月8日立即報(bào)名>> 【在線會(huì)議】英飛凌新一代智能照明方案賦能綠色建筑與工業(yè)互聯(lián)
-
7月22-29日立即報(bào)名>> 【線下論壇】第三屆安富利汽車生態(tài)圈峰會(huì)
-
7月31日免費(fèi)預(yù)約>> OFweek 2025具身機(jī)器人動(dòng)力電池技術(shù)應(yīng)用大會(huì)
-
7.30-8.1火熱報(bào)名中>> 全數(shù)會(huì)2025(第六屆)機(jī)器人及智能工廠展
-
免費(fèi)參會(huì)立即報(bào)名>> 7月30日- 8月1日 2025全數(shù)會(huì)工業(yè)芯片與傳感儀表展
-
即日-2025.8.1立即下載>> 《2024智能制造產(chǎn)業(yè)高端化、智能化、綠色化發(fā)展藍(lán)皮書》
推薦專題
- 1 AI 眼鏡讓百萬 APP「集體失業(yè)」?
- 2 豆包前負(fù)責(zé)人喬木出軌BP后續(xù):均被辭退
- 3 一文看懂視覺語言動(dòng)作模型(VLA)及其應(yīng)用
- 4 “支付+”時(shí)代,支付即生態(tài) | 2025中國跨境支付十大趨勢(shì)
- 5 中國最具實(shí)力AI公司TOP10
- 6 特斯拉Robotaxi上路,馬斯克端上畫了十年的餅
- 7 國家數(shù)據(jù)局局長劉烈宏調(diào)研格創(chuàng)東智
- 8 AI的夏天:第四范式VS云從科技VS地平線機(jī)器人
- 9 張勇等人退出阿里合伙人
- 10 深圳跑出40億超級(jí)隱形冠軍:賣機(jī)器人年入6.1億,港股上市