OpenCV系列之圖像梯度 | 十八
目標
在本章中,我們將學(xué)習(xí):
查找圖像梯度,邊緣等
我們將看到以下函數(shù):cv.Sobel(),cv.Scharr(),cv.Laplacian()等
理論
OpenCV提供三種類型的梯度濾波器或高通濾波器,即Sobel,Scharr和Laplacian。我們將看到他們每一種。
1. Sobel 和 Scharr 算子
Sobel算子是高斯平滑加微分運算的聯(lián)合運算,因此它更抗噪聲。逆可以指定要采用的導(dǎo)數(shù)方向,垂直或水平(分別通過參數(shù)yorder和xorder)。逆還可以通過參數(shù)ksize指定內(nèi)核的大小。如果ksize = -1,則使用3x3 Scharr濾波器,比3x3 Sobel濾波器具有更好的結(jié)果。請參閱文檔以了解所使用的內(nèi)核。
2. Laplacian 算子
它計算了由關(guān)系
給出的圖像的拉普拉斯圖,它是每一階導(dǎo)數(shù)通過Sobel算子計算。如果ksize = 1,然后使用以下內(nèi)核用于過濾:
代碼
下面的代碼顯示了單個圖表中的所有算子。所有內(nèi)核都是5x5大小。輸出圖像的深度通過-1得到結(jié)果的np.uint8型。
kernel = egin{bmatrix} 0 & 1 & 0 1 & -4 & 1 0 & 1 & 0 end{bm下面的代碼顯示了單個圖表中的所有算子。所有內(nèi)核都是5x5大小。輸出圖像的深度通過-1得到結(jié)果的np.uint8型。
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('dave.jpg',0)
laplacian = cv.Laplacian(img,cv.CV_64F)
sobelx = cv.Sobel(img,cv.CV_64F,1,0,ksize=5)
sobely = cv.Sobel(img,cv.CV_64F,0,1,ksize=5)
plt.subplot(2,2,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,2),plt.imshow(laplacian,cmap = 'gray')
plt.title('Laplacian'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,3),plt.imshow(sobelx,cmap = 'gray')
plt.title('Sobel X'), plt.xticks([]), plt.yticks([])
plt.subplot(2,2,4),plt.imshow(sobely,cmap = 'gray')
plt.title('Sobel Y'), plt.xticks([]), plt.yticks([])
plt.show()
結(jié)果:
gradients
一個重要事項
在我們的最后一個示例中,輸出數(shù)據(jù)類型為cv.CV_8U或np.uint8。但這有一個小問題。黑色到白色的過渡被視為正斜率(具有正值),而白色到黑色的過渡被視為負斜率(具有負值)。因此,當您將數(shù)據(jù)轉(zhuǎn)換為np.uint8時,所有負斜率均設(shè)為零。簡而言之,您會錯過這一邊緣信息。
如果要檢測兩個邊緣,更好的選擇是將輸出數(shù)據(jù)類型保留為更高的形式,例如cv.CV_16S,cv.CV_64F等,取其絕對值,然后轉(zhuǎn)換回cv.CV_8U。
下面的代碼演示了用于水平Sobel濾波器和結(jié)果差異的此過程。
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('box.png',0)
# Output dtype = cv.CV_8U
sobelx8u = cv.Sobel(img,cv.CV_8U,1,0,ksize=5)
# Output dtype = cv.CV_64F. Then take its absolute and convert to cv.CV_8U
sobelx64f = cv.Sobel(img,cv.CV_64F,1,0,ksize=5)
abs_sobel64f = np.a(chǎn)bsolute(sobelx64f)
sobel_8u = np.uint8(abs_sobel64f)
plt.subplot(1,3,1),plt.imshow(img,cmap = 'gray')
plt.title('Original'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,2),plt.imshow(sobelx8u,cmap = 'gray')
plt.title('Sobel CV_8U'), plt.xticks([]), plt.yticks([])
plt.subplot(1,3,3),plt.imshow(sobel_8u,cmap = 'gray')
plt.title('Sobel abs(CV_64F)'), plt.xticks([]), plt.yticks([])
plt.show()
查看以下結(jié)果:
double_edge
不斷更新資源
獲取更多精彩

請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
-
即日-9.1立即下載>> 【限時下載】ADI中國三十周年感恩回饋助力企業(yè)升級!
-
即日-9.16點擊進入 >> 【限時福利】TE 2025國際物聯(lián)網(wǎng)展·深圳站
-
10月23日立即報名>> Works With 開發(fā)者大會深圳站
-
10月24日立即參評>> 【評選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評選
-
11月27日立即報名>> 【工程師系列】汽車電子技術(shù)在線大會
-
12月18日立即報名>> 【線下會議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會
推薦專題
- 1 阿里首位程序員,“掃地僧”多隆已離職
- 2 先進算力新選擇 | 2025華為算力場景發(fā)布會暨北京xPN伙伴大會成功舉辦
- 3 宇樹機器人撞人事件的深度剖析:六維力傳感器如何成為人機安全的關(guān)鍵屏障
- 4 清華跑出具身智能獨角獸:給機器人安上眼睛和大腦,融資近20億
- 5 特朗普要求英特爾首位華人 CEO 辭職
- 6 踢館大廠和微軟,剖析WPS靈犀的AI實用主義
- 7 騰訊 Q2 財報亮眼:AI 已成第二增長曲線
- 8 谷歌吹響AI沖鋒號,AI還有哪些機會
- 9 蘋果把身家押在Siri上:一場輸不起的自我革命
- 10 共探合作新機遇!江門市新會區(qū)(深圳)“AI + 機器人” 產(chǎn)業(yè)對接會成功舉辦