如何使用Python將給定的圖像集進(jìn)行聚類?
介紹大家好,最近在參加深度學(xué)習(xí)競(jìng)賽時(shí),遇到了一個(gè)有趣的問題,即如何將給定的圖像集進(jìn)行聚類,你可能會(huì)說,這不是一個(gè)簡(jiǎn)單的分類問題嗎?使用卷積神經(jīng)網(wǎng)絡(luò), 就實(shí)現(xiàn),但關(guān)鍵在于沒有合適訓(xùn)練數(shù)據(jù)提供訓(xùn)練。在不想自己收集數(shù)據(jù)集的情況,我們?nèi)绾谓鉀Q這個(gè)問題呢?這就是本文的主要內(nèi)容,即將深度學(xué)習(xí)直接應(yīng)用于測(cè)試數(shù)據(jù)(此處為圖像),而無需創(chuàng)建訓(xùn)練數(shù)據(jù)集并在該數(shù)據(jù)集上訓(xùn)練神經(jīng)網(wǎng)絡(luò)。卷積神經(jīng)網(wǎng)絡(luò)作為特征提取器首先我們需要討論為什么需要特征提取器?以及如何使卷積神經(jīng)網(wǎng)絡(luò)(CNN)發(fā)揮作用。圖像數(shù)據(jù)的特征提取器:假設(shè)算法需要像特征一樣需要兩只眼睛,一只鼻子和一張嘴來將圖像分類為面部,但是在不同的圖像中,這些特征存在于不同的像素位置,因此簡(jiǎn)單地將圖像扁平化并將其提供給算法是不起作用的。而解決這個(gè)問題剛好是CNN的卷積層發(fā)揮作用的地方。卷積層作為我們的特征提取器,并將圖像分解為越來越精細(xì)的細(xì)節(jié),我們來看一下下面的例子:
這是一只貓的圖像,這是Vgg16的第一個(gè)卷積層看到它的樣子
請(qǐng)注意不同的圖像,這些是我們的CNN所學(xué)習(xí)的特征圖,一些特征圖著重于輪廓,一些特征著重于紋理,而某些特征則涉及更細(xì)微的細(xì)節(jié)(如耳和嘴),下一階段的卷積層將這些特征分解得更細(xì)的細(xì)節(jié)。
上午我們知道了卷積層可以學(xué)習(xí)圖像的特定功能,那么接下來我們將實(shí)現(xiàn)編碼。實(shí)現(xiàn)CNN的卷積層網(wǎng)絡(luò):以下代碼顯示了如何使用預(yù)訓(xùn)練的CNN Vgg16獲得以上結(jié)果:MyModel = tf2.<a onclick="parent.postMessage({'referent':'.tensorflow.keras'}, '*')">keras.a(chǎn)pplications.VGG16(
include_top=True, weights='imagenet', input_tensor=None, input_shape=None,
pooling=None, classes=1000, classifier_activation='softmax'
)
MyModel.summary()
## lets Define a Function that can show Features learned by CNN's nth convolusion layer
def ShowMeWhatYouLearnt(<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..Image'}, '*')">Image, <a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..layer'}, '*')">layer, <a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..MyModel'}, '*')">MyModel):
<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..img'}, '*')">img = img_to_array(<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..Image'}, '*')">Image)
<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..img'}, '*')">img = np.<a onclick="parent.postMessage({'referent':'.numpy.expand_dims'}, '*')">expand_dims(<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..img'}, '*')">img, 0)
### preprocessing for img for vgg16
<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..img'}, '*')">img = tf2.<a onclick="parent.postMessage({'referent':'.tensorflow.keras'}, '*')">keras.a(chǎn)pplications.vgg16.preprocess_input(<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..img'}, '*')">img)
## Now lets define a model which will help us
## see what vgg16 sees
<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..inputs'}, '*')">inputs = <a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..MyModel'}, '*')">MyModel.inputs
<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..outputs'}, '*')">outputs = <a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..MyModel'}, '*')">MyModel.layers[<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..layer'}, '*')">layer].output
<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..model'}, '*')">model = Model(inputs=<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..inputs'}, '*')">inputs, outputs=<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..outputs'}, '*')">outputs)
<a onclick="parent.postMessage({'referent':'.kaggle.usercode.12234793.44545592.ShowMeWhatYouLearnt..model'}, '*')">model.summary()
## let make predictions to see what the Cnn sees

發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
最新活動(dòng)更多
-
即日-9.1立即下載>> 【限時(shí)下載】ADI中國(guó)三十周年感恩回饋助力企業(yè)升級(jí)!
-
即日-9.14點(diǎn)擊進(jìn)入 >> 【限時(shí)福利】TE 2025國(guó)際物聯(lián)網(wǎng)展·深圳站
-
10月23日立即報(bào)名>> Works With 開發(fā)者大會(huì)深圳站
-
11月27日立即報(bào)名>> 【工程師系列】汽車電子技術(shù)在線大會(huì)
-
精彩回顧立即查看>> 【在線研討會(huì)】解析安森美(onsemi)高精度與超低功耗CGM系統(tǒng)解決方案
-
精彩回顧立即查看>> 【在線會(huì)議】CAE優(yōu)化設(shè)計(jì):醫(yī)療器械設(shè)計(jì)的應(yīng)用案例與方案解析
推薦專題
- 1 傳魏建軍與賈躍亭合作,長(zhǎng)城汽車出海美國(guó)
- 2 黃仁勛:與雷軍長(zhǎng)期合作,共探AI智駕
- 3 阿里首位程序員,“掃地僧”多隆已離職
- 4 先進(jìn)算力新選擇 | 2025華為算力場(chǎng)景發(fā)布會(huì)暨北京xPN伙伴大會(huì)成功舉辦
- 5 2025年第一支10倍股,來了!
- 6 清華跑出具身智能獨(dú)角獸:給機(jī)器人安上眼睛和大腦,融資近20億
- 7 特朗普要求英特爾首位華人 CEO 辭職
- 8 騰訊 Q2 財(cái)報(bào)亮眼:AI 已成第二增長(zhǎng)曲線
- 9 具身智能機(jī)器人量產(chǎn)前夜,標(biāo)準(zhǔn)機(jī)腦正在成型
- 10 共探合作新機(jī)遇!江門市新會(huì)區(qū)(深圳)“AI + 機(jī)器人” 產(chǎn)業(yè)對(duì)接會(huì)成功舉辦